

Development of the Agricultural Biomaterials Industry in Ontario: Identifying Investment Opportunities

Food, Agricultural and

Resource Economics

Aung Oo (Western Sarnia-Lambton Research Park) &

Alfons Weersink (University of Guelph)

Bioeconomy Research and Innovation Forum Day Collaborating to Advance Ontario's Bioeconomy October 24, 2016

Background

A vibrant biomaterials sector could

Resource Economics

Food, Agricultural and

- Increase demand for crops in Ontario (minor)
- Revitalize manufacturing industries
- Create rural development opportunities
- Reduce the environmental footprint of industry

CHANGING LIVES

Purpose

 Identify the agricultural biomaterials with the most promising commercialization potential in Ontario

Scope limited to

- A set of biomaterials
- Biomass sources from Ontario
- Auto, construction and consumer product sectors

Biomaterials Considered

Bioplastics and biopolymers

PLA, PET

2. Biofoams and biorubbers

Woodbridge seat cushions for Ford

3. Structural biocomposites

replacement for glassfibre composites- hemp

4. Non-structural biocomposites

auto sector is major market

5. Fibreboards

construction and furniture are major markets

Food, Agricultural and Resource Economics

CHANGING LIVES IMPROVING LIFE

Factors Affecting Commercialization of Biomaterials

- 1. Feedstock Compatibility
- 2. Technology Maturity
- 3. Profitability
- 4. Economic Development Potential
- 5. Substitute Availability
- 6. Niche Market Potential
- 7. Regulatory & Institutional Support
- 8. Existing Value Chain/ Infrastructure

1. Feedstock Compatibility

 Sufficient biomass (crop residue or dedicated biomass crop) can be supplied for biomaterial industry provided appropriate incentives

Food, Agricultural and

Resource Economics

 Depends on markets being established; not on ability to produce the material

 Is technology at R&D stage, demonstration phase, or commercialized?

 Investors expect higher returns for biomaterials with unproven performance (or only at small scale)

3. Profitability

Will it be profitable within 5 years of initial investment?

- Profitability depends on
 - Production costs,
 - Pricing power,
 - Competition.

4. Development Potential

Will the biomaterial industry

Food, Agricultural and

Resource Economics

- Create jobs?
- Enhance competiveness of other components of supply chain?

 Attractiveness increases if development occurs in desired locations (i.e. rural areas)

 How do productions costs compare to alternatives?- Key factor

- Relative costs depend on market conditions
 - Natural gas lowers cost of recycled plastics
 - Low oil prices decreases attractiveness of replacements made without fossil fuels

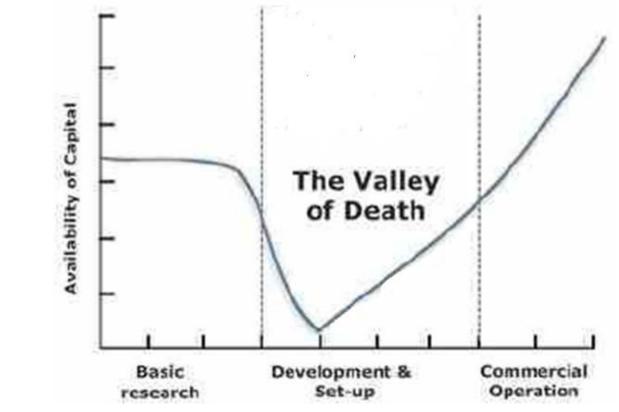
6. Niche Market Existence

 Does bioproduct have to compete with conventional products in commoditiized markets?

 A distinct product increases potential demand growth and pricing power

7. Institutional Support

- Regulatory initiatives can provide support to an infant industry
 - i.e. ethanol mandates helped create the current sector
 - But same support negatively affected biochemical sector
- Innovation ecosystem support


Food, Agricultural and

Resource Economics

- Affects the ease of doing business
 - Regulatory approval process cited as a major burden facing Canadian bioproduct firms

The "Valley of Death" for a New Innovation

Source: Dammer and Carus, 2014

8. Existing Value Chain

- Establishment cost lowered if bioproduct can be incorporated into existing infrastructure
 - i.e. BioAmber leveraged an existing value chain

 Development of a new value chain for biomaterials could take time

Food, Agricultural and

Resource Economics

Development Potential of Biomaterial Sector for Ontario

Biomaterials	Technology Development Status	Market Development Status	Competitive Edge of Manufacturing in Ontario	Total Score
Bioplastics & Biopolymers	3	2	1	6
Biofoams & Biorubbers	3	2	2	7
Biocomposites (Structural)	2	1	1	4
Biocomposites (Non-Structural)	4	2	3	9
Fibreboards	4	2	3	9

1-least favourable, 5-most favourable

Food, Agricultural and Resource Economics

CHANGING LIVES IMPROVING LIFE

Specific Biomaterial Product Evaluation

Non-structural Biocomposites

- Swithgrass/miscanthus flower pots
- Wheat straw car door panels

Fibreboard

Corn stover construction panels

Biofillers

- Wheat straw/biomass crop insulation
- Residue as packaging material

Food, Agricultural and Resource Economics

CHANGING LIVES IMPROVING LIFE

Role of Government?

Market-Push Strategies

- Public funding
- Skilled workforce development
- R&D
- Infrastructure development

Market-Pull Strategies

- Cap-and-trade/ carbon tax
- Labeling and consumer awareness
- Public procurement

Thoughts from ISBBB

(International Symposium on Bioplastics, Biocomposites, & Biorefining)

Growth in symposium

Food, Agricultural and

Significant resources into renewables

Examples

- 1. IGPC
 - Profitable "biorefinery"

2. Nature Works- Ingeo

- 10 years ago: Bioplastics = biodegradable
- Currently: Bioplastics = plastics

Summary

Most promising areas for developing an agricultural-based biomaterial industry in Ontario are:

Non-structural biocomposites Fibreboards

Why

- Technology developed
- Significant market potential, (construction)
- Large biomass feedstock requirement
- Local manufacturing due to logistics

Summary

Development of any biomaterial sector would benefit from coordinated efforts across governments

- Consistent definition of bioproducts
- Area of focus
 - US- pharmaceutical,
 - EU- agr-based bioproducts
- Development of an innovation ecosystem